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Abstract. We study the statistical mechanics of an infinite one-dimensional 
classical lattice gas. Extending a result of vA~ Hov]~ we show tha~, for a large class 
of interactions, such a system has no phase transition. The equilibrium state of the 
system is represented by a measure which is invariant under the effect of lattice 
translations. The dynamical system defined by this invariant measure is shown to 
be a K-system. 

1. Introduct ion  and S t a t e m e n t  of Results  

Le t  72 be the  set of al l  integers  <> 0. W e  t h i n k  of the  e lements  of 7Z 
as the  sites of a one-dimensional  la t t ice ,  each site m a y  be occupied b y  0 
or 1 par t ic le .  I f  n par t ic les  are present  on the  la t t ice ,  a t  pos i t ions  
il < " • • < in, we associate  to  t h e m  a "po ten t i a l  energy"  

v({il . . . . .  i ,})= X X ~ ( A  . . . .  ,i~). (1.1) 
~i {i . . . . . .  i~} c{i . . . . . .  i~} 

The " k - b o d y  po t en t i a l "  ~bk is a real  funct ion  of i ts  a rguments  ]1 < " " " < Jk 
and  is assumed to  be t r ans ]a t iona l ly  i nva r i an t  i.e., if 1 E Z ,  

~5~(] 1 + 1 , . . . , ] ~  + l) = Ck( ]  1 . . . . .  ]k ) .  (1.2) 

Let  S ( Z  and  K s be the  p roduc t  of one copy  of the  set K = {0, 1} for 
each po in t  of S ; K s is the  space of al l  conf igurat ions  of occupied and  
e m p t y  sites in S ; K s is compac t  for  the  p roduc t  of the  discrete  topologies  
of t he  sets  {0, 1}. Le t  (~(K s) be t he  Banach  space of rea l  cont inuous  
flmct, ions on K s wi th  the  un i form no rm and  ~ ( K  z) i t s  dual ,  i.e. the  
space of real  measures  on K s . 

I f  S C T ( Z we m a y  wr i te  

K T= K S x K T\s (1.3) 

and  there  is a canonical  m a p p i n g  ~TZ : ~ ( K s )  ~ (d~(KT) such t h a t  

o:Ts qJ (xs ,  xT\s) = ~v (xs) . (1.4) 

We denote  b y  a*T the  ad jo in t  of aTz:  

z¢~ r/x (q0) = ~t (aTS ?) • (1.5) 
19 Commun. math. Phys., VoL 9 
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I t  ~d]l be convenien t  to  use a func t iona l  no ta t ion  for  measures ,  wr i t ing  
# (x) dx i n s t ead  of d#.  W e  have  t hen  

~ T #  (Xs) = f dxT\s # (xz, XT\S) • (1.6) 

Let (a, b] = {i ~ Z : a < i <= b} be a finite in te rva l  of Z .  The Gibbs 
measure y ~  Cdd(K(~,b]) associates  to  each po in t  x = (x~+ 1 . . . .  , xb) of 
K(a,b] the  mass  

Ya ~ (x) = e-  ~ (s (z)) (1.7) 
where 1 

S(x) = {i E (a, b]: x~ = 1}. (1.s) 

The  measure  Ya ~ is posi t ive,  has  t o t a l  mass  
t 1 

Zb_~= f y,6(x) d x =  ~ " '"  X yah(x) (1.9) 
Xa+l = 0 xb=0 

and  the  corresponding normal ized  measure  is 

~a b = Zbia  Ya 8 " (1.10) 

Theorem 1. Let ~ be the space o/sequences q~ = (q)~)~ ~_ i such that 

X 2 :  i~I¢~÷~(0, i~ . . . . .  i~)] < + ~ (1.11) 
/ > 0  O<i : t< ' "  <Q 

i / ¢  C #, then 
(i) the/ollowing limit exists and is finite 

p(qS) = l im , I logZb_~ (1.12) 
b--a-->oo 0 -- a 

it is continuously differentiable on any finite dimensional subspace o] #.  
(ii) /or every finite S ( Z there exists ~s ~ d / ( K  s) such that 

l ira ~,(a,b] Yah = Os" (1.13) 

There is a measure ~ E dE (K z)  such that 

• (1 .14)  

/or all finite S ( Z ,  and 0 depends continuously on qb on any finite dimen- 
sional subspace o/ d ~ ]or the vague topology o] measures ~. 

This theorem expresses t h a t  a t h e r m o d y n a m i c  l imi t  (infinite sys tem 
l imit)  exis ts  for  the  s ta t i s t i ca l  mechanics  of ~ one-dimensional  la t t ice  
sys tem if *he condi t ion  (1.11) is satisfied. F u r t h e r m o r e  the  s t a t e  of t he  
infini te sys tem,  descr ibed b y  the  measure  Q, depends  cont inuous ly  on the  
t e m p e r a t u r e  and  chemical  po ten t ia l ,  which means  t h a t  no phase trami- 

1 I t  is customary to write in (1.7) instead of U(S)  the  expression ~( -- rite+ U'(S)) 
where fl-1 is ~he temperature, # is the  chemical potential and U'  is computed by  
replacing Z by Z in (1.1). For notat ional  convenience we absorb here -- tt 

k_~i k>l 
as ~ l  and  fl ~s multiplic~tive constant  in the  definition of U. 

I.e. the  w*-topo]ogy or the  we~k topology of J / ( K X )  in duali ty with  ~ (KX). 
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tion can occur3; the  sys t em remains  a "gas". I f  ~ + ~  = 0 for 1 > 1, t hen  
(1.11) becomes 

i I¢~(0,  ~)1 < + c o .  (1.15) 
i > 0  

This condi t ion  ensures t h a t  the  energy of in te rac t ion  of all  par t ic les  a t  
t he  lef t  of a po in t  of Z wi th  al l  the  par t ic les  a t  the  r igh t  is bounded  4. 

Given S ( Z ,  the  t r a n s l a t i o n  T ~ : i -+ i + l defines a homeomorphism 
of K s onto K s+z:  

TZ( . . . .  x_ 1, x 0, x 1 . . . .  ) = ( . . . .  x_ ~_~, x_~, x ~ + l  . . . .  ) (1.16) 

and  i f / ~  ~ (KS) ,  # ~ £ ( K  s) we define ~ T~/~  ~(KS+~) ,  T ~ # 6 ~£(KX+~): 

T~/(x) = / ( T - ~ x ) ,  T ~ /~(x) =/~(T-~x)  (1.17) 
so t h a t  

#(T~/) = f d x # ( x )  / (T-~x)  = f dx# (T ~ x )  /(x) = T-B#(/) (1.18) 

Since the  measure  @ is v is ib ly  T - inva r i an t  i n ~ ( K Z ) ,  the  t r ip le  (K z ,  @, T) 
is a dynamica l  system% 

Theorem 2. The dynamical system (K ~, @, T) is a K-system. 
This  impl ies  t h a t  the  measure  ~ is ergodie and  satisfies a "cluster 

property" (see Sec. 2) as one expects  for a gas. 

2. Proof  of Theorems 1 and 2 

N* = {i C Z : i > 0} and  K+ = K N*. F o r  eve ry  in teger  m _-> 0 Le t  
we m a y  wri te  

K+ = K(°, ~] × T ~ K + .  (2.1) 

I n  pa r t i cu l a r  if x ~ K + ;  then  (0, x) EK+,  (1, x) EK+.  
W e  let  F v  ~ %~ (K+) be given b y  

F~(x) = e x p [ -  ~ ~ '  x i l . . ,  xi~b~+l(0, il  . . . . .  i~)] (2.2) 
l_~0 0 < Q < ' - ' < Q  

where  x = (x 1 . . . .  , xi . . . .  )CK+,  x i = 0 or 1 for  each i > 0. The  con- 
t i n u i t y  of F v  on K+ is ensured  b y  (1.11). A m a p p i n g  ~f¢ of (g(K+) in to  
i tself  is defined b y  

~f~/(x) = / ( 0 ,  x) + F~(x) / (1 ,  x) (2.3) 

8 This result was known when • has finite range, i.e. when there exists L ~  -}- co 
such that  ~b~+l(0, i 1 . . . .  , i~) ~ 0 for i ~  L (hence for l ~  L). In that  case P (¢ )  is 
real analytic on finite dimensional subspaces of d ~ (is this true also here ?). A gener- 
alization of this result exists to continuous systems with a "hard core", see 
VAN Hove, [5]. 

4 II ¢2 ~ 0 and (1.15) is violated, the existence of a phase transition has been 
conjectured by 1~. FISHER [2] and M. K~c (private communications). I am indebted 
to M. FISEE~ ~or correspondence on this point. 

s We let formally d(TZx) ~ dx. 
e The notions of dynamical systems and of K-system are discussed in ARNOLD 

and Av~,z [1] and JAcoBs [3]. 
19" 
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its adjoint  ~ * :  ~ / (K+)  -~ Jg (K+)  is given by  

{ ~e* ~ (o, x) = ~ (x) 
(2.4) 

~ f* /~(1 ,  x) = F~#(x). 

Theorem 3. (i) For every q5 ~ ~ there exist )~¢ > O, he ~ ~ (K+), 
va C Jgf (K+) such that h a > O, va ~ O, va(1) = vm(hm) = 1 and 7 

~ a h ~  = 2ah~ (2.5) 

~ v ~  = 2arm. (2.6) 

(ii) I] / E ~ (K+) the ]ollowing limit 

l i r a  112~ n ~ / -  vv(/)hm/I = 0 (2.7) 

holds uni/ormly ]or q5 in a bounded subset o /a  finite dimensional subspace 
o/#. 

Off) I / #  E J / (K+)  the/ollowing limit 

lim 2~n ~ n  # = /~  (ha) vm (2.8) 

holds/or the vague topology o /~£  (K +). 
(iv) On any finite dimensional subspace o/ #, ~a is continuously 

differentiable, h¢ is continuous/or the uni]orm topology o /~(K+) ,  vo is 
continuous/or the vague topology o/~gl (K +). 

This theorem will be proved in Sec. 3., here we use it to  establish the 
results announced in Sec. 1. For  notat ional  simplicity we sh~ll often drop 
the index ~b f rom F,  ~f, 2~*, 2, h, v. 

Lemma.  Let us write 

L =- ) - 1  ~ ,  L *  = ~ - 1 ~ ,  . (2 .9 )  

(i) I] # ~ ~//~ (K+), then 

1 1 

• . .  ~ L * ~ # ( n l , . . . , n p x ) = L ~ l ( x ) . # ( x ) .  (2.10) 
n~  = 0 n t  = 0 

(ii) I / / C  c~ (K+), then 

v.  ~iV*,N*+l TZ/= L*~(v " 1) • (2.11) 

For every finite S Q IN* let 

lim ~z* ~ = v S ra-->c~ S,(0,m] 0m 

One c~n show ~hat vv defined by Theorem 3 (i) is such tha$ 

The measure v¢ describes thus the s~te of ~ system occupying the semi-infinite 
interval (0, + co) = N*. 
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We prove (i) by  induct ion on l: 

• . .  ~ L * * + 1 # ( n l  . . . . .  n~+~,x)  

= ~ L~l(n~+l, x) . L * ~ ( n ~ + i ,  x) 
~g+l 

= L~I (0, x) • L*,u(O, x) + L q  (1, x) • L*/~(1, x) (2.12) 

= L~I (0, x) • ~-1#(x) + L~I (1, x) • 2 - 1 F ( x )  " # ( x )  

= L z + 11 (x) • # (x) . 

To prove (ii) it suffices to apply  repeatedly the following ident i ty  

[v" ~N*,~*-~ I T / ]  (n 1, x) = ~,(nl, x) " ](x)  = L * v ( n  1, x) • / ( x )  

_ ~2-1v(x)  } (2.13)  
- ( ~ - ~ F ( x )  ~(x) j  "/(x)  = [L* (~./)] (n~, x) 

Let  ~ ~ J r ( K + )  be the  uni t  mass at  x o = (0 . . . . .  0 . . . .  ). I t  is readily 
checked tha~ 

Yo~ = ~0,m],N* °W*~5 • (2.14) 

B y  (1.6), (1.9) we have 

Zm = f ~ * ~  ~(X) d x  = 5 e * ~  ~(1)  = 5 ( ~ m  1) (2.15)  

and using (2.7), 

lira Z~_~ lira ~ ( ~  1) --  - -  - v ( 1 ) .  ~(h)  = h(xo) > 0 (2.16)  
b - - a - > c o  ~b-a n.-.~oo ,~n 

which implies s (1.12) with P(q}) = l o g i c  and Theorem 1 (i) follows from 
Theorem 3 (iv). 

We s tudy  now the limit 0 .13)  with S = (0, m] (this is sufficient 
because we m a y  b y  tra, nslat ion of Z map  S into (0, m] for some m). Let  
] ~(d(K(°,~]), using (2.14), (2.16), pa r t  (i) of the  Lemma and par ts  (ii), 
(iii) of Theorem 3 we get  

lira * ~(o,~J,(~,bl ~ ~(I) 
a .---> - -  o ~  j b ---). o ~  

= lim ~(o,m],(-l,~+~]Y-~,~+~(/) 
/ ,  n - - >  c ¢  

= lira ~(~,l+~L(o,l+,~+~ Yo,~+~+~(T~/) 
l ,  ~ - - ->  c~ 

= lira Z -~  * c f . z+m+~(~(T~/)  (2.17) 
1,n--->~ l + m + n  ~ ( l , l + m ] , N *  

1 1 

= h ( x o )  -~ lim 2~7 " "  ~Y' f d x L * ~ e m + ~ 5 ( n ~  . . . .  , % x )  
l, n---> c¢ n~ = 0 nl  = 0 

• ~* .  (o.,~ / (x) 

= h(xo) -~ l ~  f d x L ~ l ( x ) . L * ' ~ + ' 5 ( x ) . a N , ( o , m ] / ( x  ) 

= h ( x o )  - 1  f dx v(1) h ( x ) "  ~(h) v ( x ) "  a~*,(o,m]/(x) 

= f d x  h(x)  • v ( x ) "  o ~ . , ( o , ~ ] / ( x ) .  

Actually (2.16) is a much stronger statement th~n (1.12). 
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This establishes the existence of the limit (1.13) and shows that  the 
measure ~ defined by (1.14) satisfies 

~ * z  ~ = h . v .  (2.18) 

In view of Theorem 3 (iv), the r.h.s, of (2.17) is a continuous function 
of ~b on finite dimensional subspaces of 8. Because of the invariance of 

under T, the same is true of ~(~zs / )  for every finite S C Z  and 
/ E  ~(KS) • Par t  (ii) of Theorem 1 follows then from the density of 

u s ~ z  ~ ( K  s) 

in ~ (K z)  for the uniform topology. 
We come now to the study of the dynamical system (K  z ,  ~, T).  Let 

21 be the algebra of all e-measurable subsets of K z (rood. 0) and 2 0 be 
the subatgebra consisting of the sets of measure 0 or 1 (i.e. 0 and 
K z (rood. 0)). The system (K  z ,  ~, T)  is a K-system if there exists a sub- 
algebra ~4 of 2x such that  

(i) d C T -1~4. 
(ii) The union of the T - ~ d  generates 21. 

(iii) The intersection of the T ~  is 2 0. 
We write 

K z = K s × K z \  s (2.19) 

and define d to be the subalgebra of 21 generated by all the sets 
X × K Z \  s where X C K s and S is a finite subset of N*. The properties 
(i) and (ii) are then clearly satisfied. Let  now A ~ n T ~ d  and B be of 

l~0 
the form X × K z \z  with X C K S, S finite C N*. For M1 1 ~ 0 the charac- 
teristic hmction of A may be written as ~N*~ N* + l, T~/~, let also ]B C ~ (K+) 
be the characteristic function of B. Using part (ii) of the Lemma, we get 

e ( A  ~ B) = f d x h ( x )  . v(x) . ~N*:N* +~ T~]~(x) " /B(x) 

= f d x  [L*~(~-/z)] (x). h ( x ) . / ~ ( x )  (2.20) 

= f dx  v ( x ) .  ]~(x). [L~(h •/B)] (X). 

Given e > 0, (2.7) shows that,  for sufficiently large l, 

HL~(h • /~) - v(h . /~) hil < e .  (2.21) 

From (2.20) and (2.21) we find 

[e(A ~ B) - Q(A)e(B)l = i f  d x  ~,(x) . / dx )  " [L~(h • /~) (x) 

- ~(h . /B )  h(x)]l < e (2.22) 
and therefore 

o(A ~ B) = e(A) e (B) .  (2.23) 

By translation, (2.23) remains true for any B of the form X × K z \z  with 
X C K z, S finite C ~ ,  and therefore for any B ~ 21. In  particular for 
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B = A, we obtain ¢(A) = ~(A) 2 hence ~(A) = 0 or 1, proving the pro- 
perry (iii) of K-systems and therefore Theorem 2. 

Let S be a finite subset of Z and define Js Cog(Kz) by/s(X) = 1 if 
i C S ~ xi = 1, Ja (x) = 0 otherwise. The correlation Junction 0 associated 
to ¢ is a function of finite subsets of Z defined by 

#(S)  = O (/s) . (2.24) 

Notice that  by Theorem 1, ~ (S) is a continuous function of ~5 on finite 
dimensional subspaces of #. We have also 

lira ~(S~ ~' T~S2) = ~(S~) - ~($2) (2.25) 
[-+c~ 

a proper~y known as cluster property and which should be possessed by 
the correlation function of a gas. The cluster propeI4y (2.25) is a conse- 
quence of strong mixing,  which is a property of all K-systems% The 
entropy of a K-system is > 0 l°, this entropy is identical to the mean 
entropy in the sense of statistical mechanics (see [4]). The K-system 
property (iii) has here a simple physical interpretation: it is not possible 
to make the system look different "at  finite distances" by imposing 
restrictions "infinitely far away" on the configurations of the system 
(absence of long-range order). 

3. Proof of Theorem 3 

In  this section we establish a series of propositions which will result 
in a proof of Theorem 3. 

For m ~ 0 we let ~m = ~N*,(o,~i ~(K(O'm]), i.e. ~m is the subspace 
of ~ (K+) consisting of those ] such that  / (x )  = ] (x') i f  x i = x~ for i < m. 

Proposition 1. Let / ~cdm, J >  0 and x i = x ' i  /or i =  1 , . . . , k .  I /  
n >  O, n > m - k, then 

~ .  / (x') 
AF1 < .~" /(x) < A k  (3.1) 

where 

d k- exp [ X  X ( i , -  . . . . .  i,)tl. (3.2) 
t / > 0  O < i l < . . . < Q > / ~  ] 

If  ]c ~ m, then ](x') = ](x) and (3.1) holds thus for n = O. If  n > O, 
(2.3) yields 

.~ ' / (x ' )  _ z , - ~  /(o, x') + E(x') z--~/(1,  x') 
.~¢e~/(x) ~f~-~ /(O,x) + F(x) ~ f ~ - l / ( 1 ,  x) (3 .3)  

Using induction on n we may assume that  for n 1 = 0, 1, we have 

~ - ~ / ( n ,  x') g A~+I (3.4) A ~  1 < . ~ - ~  / (n ,  x) 

9 See [ I ]  11.4. 
l0 See [1] 12.31. 
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and 

Therefore 

[ ~ o < ~ < X < ~ >  ~ ] ~(x,) exp - • . . .  I~+~(0 'q  . . . . .  i~)l =< ~(x) 

X tq~+x(o, i~ . . . . .  fi)l] • 
0 < / i <  " ' ' < i l > ~  

(3.5) 

and (3.1) follows. 
Notice tha t  if we write 

B = exp [ ~ o  v ,  
l 0 < i ~ <  . . .  

then  B -1 < F(x) < B. 

<i [¢~+~(0, i~ . . . . .  i~)]] (3.8) 

Proposition 2. There exist ~ ~ ~/(K+) and ~ real such that ~ ~ O, 
I]vl[ = 1 and 

~ * ~  = 2v .  (3.9) 

Furthermore 1 ÷ B -1 g ~ ~ 1 + B where B is given by (3.8). 
The set {/~ ~ ' ( K + )  : # ~ 0 and ~u(1) = 1} is convex, vaguely com- 

pact  and mapped continuously into itself by  

# -> [ ~ * #  (1 ) ] -~ f* /~ .  (3.10) 

B y  the theorem of SCnAVDnR-TYcgo~ov this mapping has a fixed point  
v: (3.9) holds with ~ = ~ * v ( 1 )  = v ( ~  1). Since ~f  l (x)  = 1 + F(x) and 
B - l<=F(x)  g B, w e h a v e l + B  - 1 ~  A ~  I + B .  

Proposition 3. (i) The closed hyperplane H = { /~  ~ (K+) : v ([) = 1} is 
mapped into itsel] by L = ~-1¢.~. 

(ii) Let / ~ ~ ,  ] >= O, n ~ m, then 

sup L~/(x) <= Aov(/) (3.11) 
xEK+ 

inf Ln/(x) ~ AolV(]) .  (3.12) 
x~K+ 

(iii) I / / ~ V ( K + ) ,  the sequence I[Ln/l[ is bounded by Aoll]][. 
(iv) A norm I I[']]l on V(K+) is defined by 

Ill/Ill = ~ ( l / I ) =  f dx ~(x)I/(x)l =</I/ll • (3.13) 

(v) I[[L/ll[ g ][]fill/or all / E V (K+). 
(vi) I / / E  ~ ,  v ([) = O, and n >= m, then 

] l l /~ / l l l  < ( 1  - Ao 1) Ill/Ill • (3.14) 
(i) follows from 

v(L]) = 2-~ ~f*~(]) = v([ ) ,  (3.15) 

~f~--i /(0, X') ----~ Ak (3.6) 
A~ 1 ~ ~,--1/(0, X) 

F(x') ~ - ~  /(0, x') 
A l l  ~ F(x) Lf,-1/(0, x) <= An (3.7) 
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(ii) follows f rom (3.1) wi th  1¢ = 0: 

~'(1) = v(L~/) ~ sup Ln / ( x  ') 
x'cg+ (3.16) 

_--< A 0 inf L~](x) ~ Ao~,(Ln/):= Aov(] ) . 
xEK+ 

Using (3.11) with m = 0 we have  

i l L ' I l l  < I ILn l / l l I  --< ]t11I s u p  L'~l(x) g AolilJl (3.17) 
xEK+ 

which proves  (iii). 
I t  is clear t h a t  lit'Ill is a semi-norm and t h a t  Ill/Ill ~ II/ll. We  conclude 

the  proof  of (iv) b y  sho~4ng t h a t  if / >__ 0, ] ~ 0 then  {H/Ill > 0. We  m a y  
indeed choose m and  ] ' C ~  such t h a t  0 g ] ' g /  and  / ' 4  0, then  
L ~ ]  ' =4 = 0 and (3.11) yields 

] I I l l l l  = ,~(I) >= ~(i ')  >= A o  I I lL '~I ' ] I  > 0 .  ( 3 . 1s )  

To prove  (v) we notice t h a t  

IIILIIII = ~,(IL/I) = ~1-1v(I~c#/ l )  _-< , ~ - 1 ~ , ( ~ l / l )  = Z - 1 , L ~ * v ( l / ] )  

= ~'(111) = I]1/111 • (3.19) 

To prove  (vi) let ]± = 1/2 (Ill ~= 1), we have  

II]t+11I = , ' ( I + )  = ~ ( / - )  = 111/-11I • ( 3 . 20 )  

On the  other  hand  b y  (3.12) 

in f  L'V± (x) > A o Z l l l / ± ! l I  . (3.21) 
xEK+ 

Therefore  

I I I L ~ I I I t  = ~ ' ( I L ' ~ ( I +  - I - ) 1 )  

= , , ( I L ~ I +  - A o  1 II]1+111) - ( L ~ I _  - -%-~  I I I / - I I I ) 1 )  

, , ( I L ~ / +  - Ao* l l l /+ l l l  l + IL~I_ - AE~III/_II I  1) 

= v ( L n ( / +  + 1 - )  - A o l ( l l l l + l l l  + I I ] / - I I I )  ( 3 . 22 )  

= ~ ( L ' ~ l l l  - Ao] ] l l l l l l )  ~ ( 1 1 1 ) -  A ~ ~ I I I I I I I  

= (1 - A o  1) 111III1 

which proves  (3.14). 
Proposit ion 4. Define 

2 : - - - - { / C q ~ ( K + ) : u ( / ) = I ,  i ~  0 
and  

l (x ' )  
A ~  1 g-l-(x)-<= A~ if x i = x ~  for i =  1 . . . . .  k ) .  (3.23) 
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(i) L X (  Z.  
(fi) I / / ~  X,  then I1/[I <= Ao and i/ xi = x~ /or i = 1 . . . . .  k, then 

]/(x') - / ( x ) [  =< Ao(A  ~ - 1) .  (3.24) 

(iii) The set X is convex and compact in ~ (K+). 
(iv) I / / ,  ]' ~ Z,  then 

I l l / - / ' I l l  >-- B - ~ (  1 + B ) - ~ ( t I / - / ' l l  - 2Ao(A~ - 1)) (3.25) 
/or all k. 

(i) follows f rom Prop.  3 (i) and  the  same a rgumen t  as in the  
proof of Prop.  1. 

I f  / ~ X0 then  v(]) = 1 hence v(] - 1) = 0 and  one can choose 2 such 
t h a t / ( 2 )  g 1 hence / (x )  <= Ao/(2, ) <= A o, proving  II/ll g A0. I f  x~ = x~ for  
i = 1 . . . . .  k we get  

l (x ')  - / ( x )  <= /(x) (A~ - 1) ~ Ao(A ~ - 1) (3.26) 

and  (3.24) follows by  exchanging the roles of x and  x' .  
The  set  Z is clearly convex and  closed, since it  is bounded  and equi- 

continuous b y  (ii) the  ~heorem of AscoLI shows t h a t  i~ is compact ,  
proving Off). 

Le t  /, /' CZ. We can choose ~ such t h a t  I [ ( ~ ) - / ' ( ~ ) ]  = I l l - / ' t l .  
Denote  by  g the  characterist ic  funct ion of the  set {x ~ K+ : x i = ~¢ for 
i = 1, . . . ,  k}, using (ii) we obta in  

[ ] [ / - / ' ] [ ]  = v ( ] / - / ' ] )  >= ( [ [ / - / ' H  - 2A0(A~ - 1)).  v(g) (3.27) 

and (iv) follows f rom 
v ( ~ g )  B-~ 

v(g) = v(L~g) -- ~ ~ (1 + B? ' (3.28) 

where we have  used F(x)  >= B -1, 2 ~ 1 + B (see Prop.  2.). 
Proposit ion 5. (i) There exists h C H such that L h  ~- h (i.e. ~ f h  = 2h), 

v(h) = L 
(ii) U ] ~ H,  then l im 

then 

I I L n / -  hll ~- O, more generally i / / E  ~ (K+) ,  

lira L " / =  ~,(/) h (3.29) 
n - - >  o o  

in the uni /orm topology. 
(iii) I / #  E .£/(K+) the/ollowing limit exists in the vague topology 

lira ~-n(SF*)n/z = it(h) • v .  (3.30) 

B y  Prop.  4 (i), (iii) the  convex compac t  se~ X is m a p p e d  into itself 
b y  L which has therefore a fixed point  h b y  the  theorem of SCHAVD~R- 
TYCH0~OV, proving (i). 

Le t  [ ~ Z,  in view of Prop.  4. (i), (ii), we can for each integer n > 0 
choose m (n) independent  of N such tha t  

1 IT(L~V- h) - g[[ < - ~ ,  (3.31) 
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for some g E ~ (~) with ~ (g) = O. Then by Prop. 3. (v), (vi), 

1 
I[l(L ~+~(~) f -  h)ll] ~ IIIL~(~) gill + n~ 

2 (3.32) 1 
< (I - A o  1) liigliI + ~ . , <  (~ - A {  x) IIIL~¥ ] - hliI + n-Y" 

n 

If  we put M(n)  = ~ re(i), we get 
i = 1  

l im I I I L ~ + ~ ( ~ ' ) f -  hill = O (3.33) 
~ - + O O  

uniformly in N, using then Prop. 4. (iv), we have thus 

nlim IILn[ - hll = 0 (3.34) 

when [ C Z. This remains true if [ ~ H and ~ is a linear combination of 
elements of 27, these linear combinations include the elements of ~ for 
all m and are thus dense in H. By Prop. 3 (iii), I[L~fll is bounded for all 
f ~ ~(K+), hence the theorem of BANAc~-STE~HAVS shows that  

l im IIi~/ - v(/) . hll = 0 (3.35) 

proving (ii). 
If  # E ~/(K+), then for every / C Ge(K+) 

lim A-~(Lf*)" #(]) = lira t t (L ' ] )  = #(v(/) • h) == #(h) v(]) (3.36) 
n - - >  o o  ~ - - >  o o  

proving (iii). 
Proposition 6. Let ~" be a finite dimensional subspace o/ ~ and B 

a bounded subset of ~ .  
(i) The limit l im HL~f - re(f) • h~I l = 0 holds uniformly in q5 ~ B. 

~t - - >  Oo  

(ii) hv is a continuous function of q~ E ~ /or the uniform topology 
of (d (K +). 

Off) v ~ is a continuows /unction of q5 E ~" ]or the vague topology of d [  ( K + ). 
(iv) Let ~ ,  T ~ ~ ,  qS(t) = q5 + tW, t C 1R, then the/unct ion t ~ A~(t) 

has a derivative 
d 
d-t ~ (t) = ~'v (t) (~f~ (t), ~ h~ (t)) (3.37) 

where $f'~, ~ is the bounded operator on 9# (K+) defined by 

= [  ~ ~ xi~. . .x~,T~+l(O, i~  . . . .  ,i~)1 £f'~,~/(x) -z o<~,<-..<~ 

• F ~  (x) / (~,z) (3.us) 
d 

and ~ )~o (t) is a continuous/unction o/q5 ~ ~ .  

Let ~ > 0 satisfy, for all ]c and all ~ E B 
~(z') 

A~ - ~ ~ A ~  if x i = x ~  for i = l  . . . .  , k .  (3.39) 
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Then, v~( ] ) - IT~X.  Since Ak, B depend continuously on ~b C ~ ,  the 
estimates in the proof of Prop. 5 (fi) can be made uniformly in ~ C B, 
h e n c e  

-1L f- h l] = 0 (3.40) 

uniformly in @ ~ B. Since v~(]) < II[tl, (i) holds for / = [ >  0 satisfying 
(3.39). 

In  particular L~ 1 tends to he uniformly in ~b E B, and ]IL~I[]-IL~I 
= !t ~$111-1 ~f~ I, which is continuous in @ ~ B, tends uniformly in q5 C B 
towards Hh¢ll-lh~ which is therefore continuous in @ ~ ~-. 

We have the identi ty 

and, in the norm of operators on ~f (K+), 

lira l l t - l (~e+ t~  - 57v) -- Lf; ,  wtl = 0 .  (3.42) 
t-->0 

Therefore 
lira t-1(~¢+ t~ - 2¢) = ~ ¢ ( ~ ,  ~ h¢) (3.43) 
t--+0 

which proves (3.37) ; ~v is a continuous function of q} C ~-  because of the 
boundedness of [v¢(~f~,~h~)[ for ~5 C B (use h CX). 

We may  consider L~: / -~  L$/as a bounded operator from ~(K+)  to 
~ ( K +  x B). For each / ~ ( K + )  the sequence L~/  is bounded in 

(K+ x B) by Prop. 3 (riO. We have seen tha t  (i) is satisfied for linear 
combinations of / > 0 satisfying (3.39) for all k and all ¢ ~ B, these 
include again the elements of ~m for all m and are thus dense in ~ (K+). 
Applying the theorem of BANAcH-STm-~AVS tO the sequence L ~ proves 
then (i). 

Applying (i) to ] = 1 yields (fi). More generally (i) shows tha t  v~ (~ he 
is continuous in ~b ~ ~-, using then (ii) we see tha t  v~ (/) is continuous 
in q~ for each / ~ K+, proving (iii). Finally the continuity of the derivative 
(3.37) follows from the continuity in @ ~ ~ of v~ (by (ii)), hv (by {riO) 
and .W~, ~.. 
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